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Abstract Wearable sensors combined with health records and user-submitted data 
are becoming ubiquitous for continuous health monitoring. Semantic web technolo-
gies are well suited for representing and reasoning over these heterogeneous health 
data. However, existing semantic health monitoring architectures have notable defi-
ciencies, particularly in interoperability, situation prediction, and uncertainty han-
dling. We propose a semantic architecture that integrates an ontology with rules, 
fuzzy inference, and machine learning to detect and predict health risks using het-
erogeneous health data. We illustrate its application through a use case of atrial 
fibrillation and demonstrate its ability to detect and predict health situations, as well 
as provide decision support aligned with established health workflows and clinical 
guidelines. 

Keywords Semantic architecture · Ontologies · Rule-based reasoning · Fuzzy 
inference · Health monitoring 

1 Introduction 

The increasing prevalence of non-communicable diseases has given rise to the emerg-
ing field of precision health, which focuses on assessing individual circumstances 
for early detection, prevention, and mitigation of diseases. A key aspect of this is 
incorporating continuous health monitoring into people’s daily lives outside clin-
ical settings using wearable sensors [ 11]. However, sensor observations alone are 
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insufficient for health monitoring since non-communicable diseases are influenced 
by demographics, medical history, and lifestyle factors. This additional health data 
can be derived from health records and questionnaires, and can be interpreted using 
expert medical knowledge. 

Semantic web technologies are well-established for the representation of het-
erogeneous data and provide powerful reasoning and deliberation capabilities. The 
most prominent of these are ontologies (knowledge bases of domain concepts and 
their relationships specified in a knowledge representation language based on for-
mal logic [ 15]) and knowledge graphs (knowledge bases structured in a graph [ 34]). 
In previous work, we undertook a mapping study of the use of semantic web tech-
nologies in sensor-based personal health monitoring systems [ 24]. We identified 
key challenges that semantic architectures must address: interoperability, situation 
analysis (the detection and prediction of health situations), decision support, con-
text awareness, and uncertainty handling. We critically evaluated the state of the 
art in the field and determined the extent to which these challenges have been 
addressed in current semantic systems. The study showed notable deficiencies in 
existing work, particularly in the areas of interoperability, situation analysis, and 
uncertainty handling. 

A key aspect of interoperability that is poorly explored in existing semantic archi-
tectures is process and clinical interoperability, which entails a shared understanding 
of healthcare processes and the seamless transfer of care between different clinical 
teams [ 2]. This involves supporting clinicians in providing consistent care outside 
clinical settings that is grounded in established clinical guidelines and workflows. 
With regard to situation analysis, several semantic health monitoring systems are 
capable of detecting abnormalities in sensor observations or classifying individuals 
into predefined health states. However, many are unable to predict the risk of adverse 
outcomes in the future. Additionally, many do not take uncertainty into consideration 
in the situation analysis or decision support processes. While these challenges have 
been tackled outside semantic systems, there is a need for semantic architectures 
that integrate techniques for effective situation prediction and uncertainty handling, 
while supporting decision making for health and wellness applications. 

To address the shortcomings of current semantic personal health monitoring sys-
tems, we propose a semantic architecture for health monitoring using heterogeneous 
health data. We demonstrate and evaluate the architecture through a use case appli-
cation of atrial fibrillation (AF), the most common sustained arrhythmia. We use a 
top-down approach to create a knowledge graph by first developing an AF monitor-
ing application ontology to semantically and formally represent health data, and then 
using the ontology to perform inferences on the data [ 34]. Although ontologies excel 
in structuring domain knowledge, they lack explicit support for uncertainty [ 23]. To 
deal with this, we incorporate rules supported by fuzzy inference to reason over the 
data for situation analysis and decision support under uncertainty. Rule-based reason-
ing is intuitive and human-readable, resulting in high transparency and explainability 
[ 13], while fuzzy inference is useful for expressing concepts in vague terms, which 
addresses the inherent uncertainty in health situations and outcomes. We also show 
how outputs from machine learning (ML) classification models can be incorporated
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in the knowledge graph to enhance situation analysis. As illustrated by the use case, 
the proposed architecture is capable of detecting and predicting adverse health sit-
uations, and offering appropriate decision support firmly rooted in well-established 
clinical guidelines and workflows. 

2 Related Work in Sensor-Based Personal Health 
Monitoring Systems 

Semantic systems The use of semantic web technologies is ubiquitous in the health 
domain. However, a notable limitation of these technologies is their inability to 
inherently reason under uncertainty. It is therefore essential to augment semantic 
architectures with techniques that support uncertainty handling. One such tech-
nique is Bayesian networks (BNs), probabilistic graphical models in the form of 
directed acyclic graphs that represent cause-effect relationships. BNs have been used 
in semantic health monitoring systems to represent causes and risk factors of dis-
eases, as is done by Kordestani et al. [ 19] and Mcheick et al. [ 22]. While BNs are 
suitable for modelling uncertainty in causality, they are not conducive to modelling 
uncertainty in raw or derived health data. 

This challenge can be overcome using fuzzy inference, the process of mapping 
crisp input into imprecise output. Fuzzy inference is capable of converting crisp health 
data values into degrees of membership of defined health categories. This allows 
health data to be expressed in fuzzy boundaries, which is representative of human 
reasoning. This has been incorporated in a number of semantic health monitoring 
systems. For instance, Ali et al. [ 1] fuzzify sensor data such as blood pressure and 
heart rate, while Esposito et al. [ 8] fuzzify the intensity of physical activity. Despite 
several semantic personal health monitoring systems incorporating these uncertainty 
handling techniques, it is often only done to a limited extent. Most of these systems 
do not account for uncertainty across the end-to-end health monitoring process from 
data pre-processing to situation analysis and decision support. 

Situation prediction is similarly limited in current semantic personal health mon-
itoring systems. While a number of existing semantic systems anticipate adverse 
health outcomes (for example, Hristoskova et al. [ 17] determine the risk of conges-
tive heart failure over a four-year time horizon, while De Brouwer et al. [ 6] anticipate 
headache attacks based on triggers), most focus on the detection of current health 
conditions without considering future outcomes. Our mapping study showed that 
only 13 out of 40 selected systems achieve some degree of situation prediction [ 24]. 
Additionally, many of these systems demonstrate ad hoc analyses that lack a solid 
foundation in established healthcare protocols. Thus, many existing semantic archi-
tectures fall short on building up on standardized healthcare workflows and guide-
lines. It is essential to develop semantic systems that facilitate collaboration between 
monitored individuals and clinicians, emphasizing established healthcare processes 
with humans in the loop.
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Non-semantic systems There also exist many sensor-based personal health mon-
itoring systems that do not incorporate semantic web technologies. A significant 
number of these non-semantic systems incorporate predictive models for outcomes 
ranging from cardiovascular disease [ 18], mortality and readmissions [ 5], and clinical 
laboratory measurements [ 7]. Among these systems, data-driven approaches, partic-
ularly deep learning, remain dominant. These models are well suited to learning 
complex features in dynamic sensor data. However, interpretability, explainability, 
computational expense, and the need for large amounts of data remain challenges 
in training and deploying neural networks [ 16]. In contrast, semantic web technolo-
gies are known to be more human-understandable and do not rely on large amounts 
of training data. There is a need to develop semantic architectures that incorporate 
ML, where the strengths of data-driven and knowledge-driven approaches can be 
leveraged to achieve the best of both worlds. 
AF monitoring systems The most widely accepted signal for the diagnosis of AF 
is the electrocardiogram (ECG), a record of the heart’s electrical activity. ECG data 
has been used extensively in AF monitoring systems for both situation detection 
and prediction [ 32]. While ECG remains the gold standard, some alternative phys-
iological signals to detect AF have been proposed. The most prevalent of these is 
photoplethysmography (PPG), an optical sensing technology consisting of a light-
emitting diode and a photodetector to detect blood volume changes. PPG is low-
cost and non-intrusive, and has been used in a number of systems with promising 
results [ 25]. However, the accuracy of the signal can be affected by sensor place-
ment, motion artifacts, contact pressure, skin tone, and obesity [ 28]. This can be 
alleviated by combining ECG and PPG, which has shown significant potential for 
AF monitoring [ 30]. 

Additionally, demographic (e.g. age and sex) and anthropometric (e.g. height and 
weight) data, medical history, and lifestyle factors are all important aspects of AF 
monitoring due to their impact on the likelihood of developing AF and its associated 
health risks. This data can be queried from health record databases. For example, 
Feldman et al. [ 9] integrate Apple Watch data with health records to determine AF 
patient eligibility for anticoagulation therapy given the risk of stroke. Non-sensor 
data can also be solicited directly from individuals via questionnaires. This can be 
particularly useful for describing AF symptoms and their severity based on impact on 
quality of life. For instance, the Atrial Fibrillation Effect on QualiTy-of-life (AFEQT) 
questionnaire was developed to assess the impact of AF [ 33]. 

3 Semantic Architecture 

Design and Approach The design of the proposed architecture is guided by the 
key challenges identified in our previous mapping study. An important commonality 
among these challenges is the need for representation support. To define these chal-
lenges as design goals, we adapt the concept of competency questions (CQs), which 
are natural language questions typically used for requirements definition in ontology
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Table 1 The requirements of the architecture expressed as competency questions 

Challenge CQ# Competency question 

Interoperability CQ1 Does the architecture support process/clinical interoperability 
(i.e. a common understanding of healthcare processes and the 
seamless transfer of care between different clinical teams)? 

CQ2 Does the architecture support semantic interoperability (i.e. the 
definition of health data in an unambiguous and universally 
understandable way)? 

CQ3 Does the architecture support syntactic interoperability (i.e. the 
representation of health data in a standard structure and 
syntax)? 

Context awareness CQ4 Does the architecture support the representation of contextual 
information such as identity, location, time, and activity? 

Situation analysis CQ5 Does the architecture support techniques for both the detection 
of current health situations and the prediction of future health 
situations? 

Decision support CQ6 Does the architecture support techniques that enhance 
transparency and explainability? 

CQ7 Does the architecture support the generation of 
recommendations and warnings in response to detected and 
predicted situations? 

Uncertainty handling CQ8 Does the architecture support data pre-processing techniques to 
handle missing, noisy, or otherwise invalid data? 

CQ9 Does the architecture support uncertainty handling in both the 
situation analysis and decision support processes? 

Cross-cutting CQ10 Does the architecture support the representation of sensor 
observations, personal information, and expert medical 
knowledge? 

engineering [ 29]. We formulate ten design goals expressed as CQs, which are then 
used to analyse the architecture. The CQs are shown in Table 1. Note that the focus of 
this work is on a prototype semantic architecture for continuous monitoring, situation 
prediction, and decision making. Non-functional requirements such as privacy and 
security, while important issues in a real-world monitoring system, are out of scope 
of this study. A running use case application of AF is used to iteratively design and 
evaluate the architecture. This is described in detail in Sect. 4. 

Abstract Architecture To fulfill the design goals, we propose an abstract semantic 
architecture consisting of three layers as shown in Fig. 1. 

i Data Layer: This layer supports the pre-processing of heterogeneous health data, 
i.e. sensor observations, health records, and data from questionnaires. Impor-
tantly, all data is formatted by mapping it to the Health Level 7 (HL7) Fast 
Health Interoperability Resources (FHIR) 1 standard for health data exchange.

1 https://build.fhir.org/. 

https://build.fhir.org/
https://build.fhir.org/
https://build.fhir.org/
https://build.fhir.org/
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Fig. 1 Abstract semantic architecture 

ii Analysis Layer: This layer handles the situation analysis functionality of the 
architecture using ML, rules, and fuzzy inference. This entails analysing health 
data to detect current health situations, while also predicting future health 
situations based on current data. 

iii Decision Layer: Central to this layer is the integration of well-established health-
care workflows which are dynamically updated to align with the latest clinical 
guidelines. Adhering to these guidelines, the layer facilitates decision making 
in response to both detected and predicted health situations by generating rec-
ommendations, issuing warnings for adverse conditions, and providing pertinent 
alerts for both clinicians and monitored individuals. 

A cross-cutting component of the three layers is the knowledge graph, in which all 
data, knowledge, situations, recommendations, and alerts are semantically annotated, 
represented, and stored.
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Fig. 2 Flow diagram showing the AF monitoring process. ECG: electrocardiogram. OAC: oral 
anticoagulation 

4 Use Case Application: Atrial Fibrillation 

AF presents a significant global health burden, affecting an estimated 46.3 million 
individuals worldwide as of 2016 and increasing steadily in incidence and preva-
lence [ 20]. AF symptoms include chest pain, heart palpitation, shortness of breath, 
and fatigue. However, it is sometimes asymptomatic, highlighting the need for early 
detection through continuous monitoring. 

The AF monitoring process detailed in this section is anchored in the most recent 
European [ 14] and Australian [ 4] guidelines for AF diagnosis and management. 
Figure 2 shows this process in a flow diagram. Facilitating collaboration between 
monitored individuals and clinicians, the process outlines clinician-led, individual-
led, and shared interventions in response to detected and predicted situations. Thus, 
the architecture complements established AF workflows, ensuring active human par-
ticipation throughout the monitoring process. In the rest of this section, we analyse 
the AF monitoring process following the three layers of the architecture. 
I. Data Layer In this layer, health data relevant to AF is preprocessed. Although 
live sensor data was not used in this study, a wearable device such as the Polar H10 
chest strap 2 can be used to collect ECG data. This device is equipped with Bluetooth 
Low Energy technology, allowing for extraction of the raw single-lead ECG data 
using a library such as Python’s Bluetooth Low Energy platform Agnostic Klient 
(Bleak). 3 The ECG data can be encoded as a FHIR Observation resource. Techniques 
such as filtering, detection of waveform characteristics, frequency conversion, and 
normalization can be used to preprocess the data in preparation for situation analysis. 

The architecture assumes that comprehensive health records, including demo-
graphic and anthropometric data as well as diagnosis, procedure, and medication

2 https://www.polar.com/en/sensors/h10-heart-rate-sensor. 
3 https://bleak.readthedocs.io. 

https://www.polar.com/en/sensors/h10-heart-rate-sensor
https://www.polar.com/en/sensors/h10-heart-rate-sensor
https://www.polar.com/en/sensors/h10-heart-rate-sensor
https://www.polar.com/en/sensors/h10-heart-rate-sensor
https://www.polar.com/en/sensors/h10-heart-rate-sensor
https://www.polar.com/en/sensors/h10-heart-rate-sensor
https://www.polar.com/en/sensors/h10-heart-rate-sensor
https://www.polar.com/en/sensors/h10-heart-rate-sensor
https://www.polar.com/en/sensors/h10-heart-rate-sensor
https://www.polar.com/en/sensors/h10-heart-rate-sensor
https://bleak.readthedocs.io
https://bleak.readthedocs.io
https://bleak.readthedocs.io
https://bleak.readthedocs.io
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history, are available and can be queried from existing databases. Where necessary, 
individuals can be prompted for input via a system-generated questionnaire regard-
ing lifestyle factors, experienced symptoms, and their severity. Data cleaning is also 
performed in this layer to establish the validity and reliability of the health data. 
II. Analysis Layer Situation analysis takes place in this layer, and includes both 
situation detection and situation prediction. 
Situation Detection In the context of AF monitoring, situation detection involves 
determining whether the monitored person currently has AF or not based on sensor 
observations and personal information such as experienced symptoms and risk fac-
tors. As discussed in Sect. 2, the detection of AF from sensor observations has been 
greatly accelerated by ML, with many models meeting and even exceeding human 
accuracy. In previous work [ 35, 36], we have implemented ML algorithms such as 
multilayer perceptron, gradient boosting, and support vector machines to detect AF 
from ECG data. ML-enabled classifications are captured in the AF monitoring ontol-
ogy (AFMO) as detected situations. This can be used as a screening tool for further 
clinician-led diagnosis. As shown in Fig. 2, false positives are logged in the system 
and included as historical training data to improve the ML models. The individual’s 
symptom state (i.e. whether they are symptomatic or asymptomatic) and severity of 
any symptoms is also captured in the AFMO. 
Situation Prediction In this work, we focus primarily on the prediction of AF and its 
associated health risks, with the two most significant being stroke and major bleeding. 
AF increases the risk of stroke due to a reduced quality in heart contractions, resulting 
in slow flow of blood and subsequent formation of blood clots [14]. This is commonly 
managed using oral anticoagulation to prevent blood clot formation, which in turn 
has the risk of major bleeding. Therefore, the risks of both stroke and major bleeding 
must be carefully weighed for people diagnosed with AF. 

Risk scores provide a systematic and quantifiable assessment of the likelihood 
of health outcomes, forming a well-established basis for health situation prediction 
based on risk factors. We selected the HARMS.2-AF score [ 31], the CHA. 2DS.2-VASc 
score [ 21], and the HAS-BLED score [ 26] to quantify the risks of new onset AF, 
stroke, and major bleeding respectively. Each scoring system recommends a risk 
category (low, moderate, or high) based on the score. Tables 2 and 3 summarise the 
scoring systems and their risk factors respectively. 

Table 2 Summary of the scoring systems, where x = risk score  

Scoring 
system 

Risk Highest 
possible score 

Risk stratification 

Low risk Moderate risk High risk 

HARMS.2-AF AF 14 x . ≤ 4 5.≤ x . ≤ 9 x .> 9 

CHA. 2DS.2-
VASc 

Stroke 10 x = 0 x = 1 x . ≥ 2 

HAS-BLED Major 
bleeding 

10 x . ≤ 1 x = 2 x . ≥ 3
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Table 3 Summary of the risk factors for each scoring system 

Scoring system Risk factors 

HARMS.2-AF Hypertension; Age; Raised BMI; Male sex; Sleep apnoea; Smoking; Alcohol 

CHA. 2DS.2-VASc Congestive heart failure/LV dysfunction; Hypertension; Age. ≥ 75; Diabetes 
mellitus; Stroke; Vascular disease; Age btwn. 65 and 74; Sex category 
(female) 

HAS-BLED Hypertension; Abnormal renal/liver function; Stroke; Bleeding 
history/pre-disposition; Labile intl. normalized ratio; Elderly; Drugs/alcohol 
concomitantly 

Since health risk cannot be binary and must take into account the intrinsic uncer-
tainty associated with future outcomes, we propose a fuzzy inference approach to 
account for uncertainty in the risk scores and health risk categories. The fuzzy 
inference process for each risk score takes place in three steps: 

i Fuzzification: We fuzzify the crisp risk scores using three membership functions 
for each score corresponding to low, medium, and high score categories. These 
input membership functions are based on the recommended risk category stratifi-
cation for each scoring system, and are shown in Fig. 3. The output of this step is 
a fuzzified value showing varying degrees of membership to each score category 
on a scale of 0–1. For example, a HARMS.2-AF score of 9 has a membership of 
0.00 to the low score category, 0.73 to the medium score category, and 0.27 to 
the high score category. This can be coded as a fuzzy value [0.00, 0.73, 0.27]. 

ii Inference: To determine the corresponding health risk category, fuzzy rules are 
used to define the relationship between the input and output. The rules are as 
follows: if the score is low, then the health risk is low; if the score is medium, 
then the health risk is moderate; and if the score is high, then the health risk is 
high. In this case, the score and health risk categories are similar. Therefore, the 
output of this step will be the same as the input, i.e. [0.00, 0.73, 0.27]. 

iii Defuzzification: To defuzzify the fuzzy value, a crisp value is computed using 
Mamdani inference. This value represents the percentage risk. To assign a risk 
category to the percentage risk, we use another membership function as follows: 
where y is a person’s computed percentage risk, they are at low risk if 0 .< y . <
40, at moderate risk if 10.< y .< 70 and at high risk if 40.< y .< 100. This output 
membership function is shown in Fig. 3. Using this defuzzification method, a 
HARMS.2-AF score of 9 results in a percentage risk of 50.06%, which can be 
considered mostly moderate risk but also partially high risk as it has a membership 
of 0.00, 0.68, and 0.32 to the low, moderate, and high risk categories respectively. 
In contrast, using the recommended HARMS.2-AF crisp thresholds, the score 
of 9 would be considered only moderate risk. Thus, the fuzzy risk category 
stratification informs appropriate decision support that takes into account the 
range of risk in each score.
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Fig. 3 Membership 
functions for the 
HARMS.2-AF score, 
CHA. 2DS.2-VASc score, 
HAS-BLED score, and the 
risk category 

III. Decision Layer After situation analysis, it is important that any adverse detected 
or predicted situations are appropriately managed. Warning alerts are triggered when 
AF is detected or when moderate or high health risks are predicted. At the same 
time, recommendations are given based on these adverse situations. The degrees of 
membership for the health risk categories as determined by fuzzy inference play 
an important role in the selection of appropriate recommendations. For example, 
low risk is only considered truly low risk if there is no degree of membership to 
the high or moderate risk categories. The process flow diagram in Fig. 2 shows the 
recommendations generated in response to each situation. 

5 AF Monitoring Ontology 

In this section, we provide details on the development of the AFMO, which provides 
the data schema for the knowledge graph. Methontology [ 10] was selected as the 
ontology development methodology as it is detailed and application-independent. 
The methodology consists of seven phases which we detail below. 
I. Specification In this phase, the AFMO’s purpose, scope, and requirements are 
clearly defined. The main purpose of the ontology within the architecture is to pro-
vide representation support and a data schema for three categories of data: sensors 
and sensor observations, personal information, and expert medical knowledge. This
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Fig. 4 The top level concepts of the AF monitoring ontology 

enables higher-level reasoning for situation analysis and decision support. The scope 
of the AFMO is limited to AF; however, the top-level concepts of the ontology are 
generalisable for other health use cases. The AFMO requirements are specified in 
terms of CQs, which cover the representation support and reasoning capabilities of 
the ontology. Examples of these CQs include: What are the symptoms of AF? What 
are the risk factors for AF? What is a particular person’s risk level for AF? 
II. Knowledge Acquisition The AFMO was developed using expert knowledge 
obtained from the literature. Scientific publications, textbooks, and clinical practice 
guidelines for AF management were consulted. 
III. Conceptualization This phase involves structuring three categories of data in 
a conceptual model. The first category includes classes to represent sensor devices, 
their measurements, and the properties they measure. The second category encom-
passes personal information, includes anthropometric, demographic, and lifestyle 
data, as well as information about the individual’s medical history, current diag-
noses, symptoms being experienced, and detected and predicted situations. Finally, 
the medical knowledge category represents risk factors for and symptoms of AF and 
its associated conditions. It also includes recommendations for mitigating detected 
and predicted situations. The top level concepts of the AFMO are shown in Fig. 4. 
IV. Integration In this phase, the AFMO is integrated with concepts from existing 
ontologies and vocabularies. Additionally, all health domain concepts are cross-
referenced to the Unified Medical Language System (UMLS) metathesaurus [ 3], 
which maps to several medical vocabularies and standards.
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V. Implementation In this phase, the AFMO is codified in a formal language. The 
AFMO was implemented using Protégé. 4 Rules and queries were written using 
Semantic Web Rule Language (SWRL) 5 and SPARQL Protocol and RDF Query 
Language (SPARQL) 6 respectively. 
VI. Evaluation Throughout the ontology development process, the Pellet reasoner 
was used to detect inconsistencies in the AFMO. No inconsistencies were detected in 
the final version of the AFMO. Additionally, the OntOlogy Pitfall Scanner! (OOPS!) 
[ 27] was used to evaluate different aspects of the AFMO including modelling deci-
sions and inferences. Only one minor pitfall was detected: “P2: Using different 
naming conventions in the ontology”. This is because of the re-use of concepts 
from existing ontologies which all have different naming conventions. Finally, the 
answerability of the CQs was also evaluated using queries. 
VII. Documentation The AFMO is publicly available at a persistent URL (PURL). 7

The AFMO specification and documentation was created using the WIzard for 
DOCumenting Ontologies (WIDOCO) [ 12] and is publicly accessible online. 8

6 Evaluation and Analysis 

Use Case Evaluation To evaluate the representation support and reasoning capability 
of the architecture for the use case, we created 25 synthetic user profiles with various 
random combinations of medical histories, diagnoses, symptoms, and other personal 
information. Because the primary focus of this work is on risk prediction using risk 
scores, no sensor data was included in the synthetic profiles. The profiles’ ages range 
from 31 to 80, with 11 being male and 14 being female, and 12 having an existing 
diagnosis of AF. As per the process flow diagram in Fig. 2, the HARMS.2-AF score 
is computed for those who do not have an AF diagnosis, while the CHA. 2DS.2-VASc 
and HAS-BLED scores are computed for those with an AF diagnosis. Table 4 gives 
a partial summary of the synthetic user profiles. The full synthetic data as well as the 
code used to generate it is available on GitHub. 9

After creating the synthetic profiles, we ran the Pellet reasoner to confirm that 
the correct inferences were computed, and queried the knowledge graph to answer 
the CQs. For example, Fig. 5a shows a subset of the property assertions inferred by 
the Pellet reasoner for a particular profile, including predicted bleeding and stroke 
risk levels as well as the corresponding recommendations, while Fig. 5b shows  a  
sample query to list all individuals at high risk for stroke. The properties asserted by 
the reasoner and the results of the sample query show that the architecture is able

4 https://protege.stanford.edu/. 
5 https://www.w3.org/Submission/SWRL/. 
6 https://www.w3.org/TR/rdf-sparql-query/. 
7 https://purl.org/afmo. 
8 https://mbithenzomo.github.io/afmo. 
9 https://github.com/mbithenzomo/afmo. 

https://protege.stanford.edu/
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Table 4 Partial summary of the synthetic user profiles. M: male; F: female; Y: yes; N: no; LR: low 
risk; MR: moderate risk; HR: high risk; N/A: not applicable 
ID Age Sex BMI Smoking 

status 
Weekly 
alcoholic 
drinks 

AF 
diagnosis 

Crisp risk score and category 

AF Stroke Major 
bleeding 

001 50 M 28.1 Never 13 Y N/A 1 (MR) 3 (HR)  

002 47 F 24.8 Former 14 N 1 (LR) N/A N/A 

003 64 M 26.5 Former 4 N 7 (MR) N/A N/A 

004 43 F 19.5 Current 9 Y N/A 5 (HR) 7 (HR)  

005 33 M 31.6 Former 4 Y N/A 4 (HR) 2 (MR) 

006 49 F 38.0 Never 16 Y N/A 3 (HR) 3 (HR)  

007 72 F 31.0 Former 11 N 4 (LR) N/A N/A 

008 32 F 29.0 Never 14 N 5 (MR) N/A N/A 

009 75 F 28.9 Never 7 Y N/A 6 (HR) 5 (HR)  

010 43 F 30.3 Former 4 N 1 (LR) N/A N/A 

011 68 M 29.0 Current 15 N 9 (MR) N/A N/A 

012 67 F 29.6 Never 10 N 3 (LR) N/A N/A 

013 51 M 22.1 Never 2 N 2 (LR) N/A N/A 

014 59 F 24.6 Former 7 Y N/A 5 (HR) 4 (HR)  

015 62 M 25.3 Never 5 Y N/A 3 (HR) 3 (HR)  

016 60 F 28.4 Current 1 N 6 (MR) N/A N/A 

017 46 M 27.2 Current 10 N 6 (MR) N/A N/A 

018 62 M 27.9 Current 12 Y N/A 1 (MR) 2 (MR) 

019 54 F 43.7 Never 13 Y N/A 2 (HR) 5 (HR)  

020 31 M 22.2 Never 11 Y N/A 2 (HR) 3 (HR)  

021 70 F 30.1 Former 8 Y N/A 5 (HR) 5 (HR)  

022 44 M 23.9 Never 11 N 3 (LR) N/A N/A 

023 47 F 22.2 Former 9 N 1 (LR) N/A N/A 

024 80 F 36.7 Never 17 N 7 (MR) N/A N/A 

025 78 M 24.9 Current 4 Y N/A 3 (HR) 4 (HR)  

to correctly categorise the risk of AF and its associated conditions, as well as give 
appropriate recommendations to mitigate these risks. 

Architectural Analysis Having demonstrated the implementation of the architecture 
using the AF use case, we now analyse it according to the previously defined design 
goals. 

CQ1 Process/clinical interoperability: This is a pivotal thread running through 
the entire architecture and monitoring process, supported by incorporating 
established clinical practice guidelines from accredited health organisations. 

CQ2 Semantic interoperability: The ontology supports the cross-referencing of 
health concepts to standard medical terminologies through the UMLS.
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(a) Property assertions (b) Sample SPARQL query 

Fig. 5 a A subset of the property assertions inferred by the Pellet reasoner. b A sample SPARQL  
query showing individuals with high risk levels for stroke 

CQ3 Syntactic interoperability: This is achieved in the data layer, in which all data 
and resources are mapped to the FHIR standard. 

CQ4 Contextual information: This is supported through the ontology, which facil-
itates the representation of contextual data including identity (e.g. name and 
age) and temporal concepts (e.g. timestamps and GPS coordinates). 

CQ5 Situation analysis: The architecture supports both rule-based situation pre-
diction using health risk scores and the capture of ML classifications in the 
ontology for situation detection. 

CQ6 Transparency and explainability: Semantic web technologies, which are 
highly interpretable and enhance explainability in AI systems, are at the 
core of the architecture. Additionally, rule-based reasoning contributes to 
transparency in situation analysis and decision support. 

CQ7 Recommendations and warnings: The decision layer supports the generation 
of warnings triggered by adverse situations, and recommendations to mitigate 
these situations based on clinical guidelines. 

CQ8 Data pre-processing: This is done in the data layer, where signal processing 
and data cleaning techniques are implemented to ensure the data is valid and 
suitable for semantic annotation and situation analysis. 

CQ9 Uncertainty handling: The architecture supports fuzzy inference in the analysis 
layer, allowing for varying degrees of membership to health categories as part 
of situation analysis, which in turn influences decision support. 

CQ10 Representation support: This is facilitated by the ontology, which forms the 
core of the architecture. All health data and expert knowledge is semantically 
annotated and captured in the ontology.
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7 Discussion and Conclusion 

This paper proposes a semantic architecture for personal health monitoring using 
heterogeneous sources of health data. Through an ontology, the architecture can 
semantically represent health data and expert knowledge. Rules and fuzzy inference 
are used for reasoning, thereby facilitating situation analysis and decision support 
under uncertainty. The functionality of the architecture is demonstrated through a 
prototype implementation for the use case of AF. We develop an ontology, AFMO, 
to model concepts relating to sensor observations, personal information, and medical 
knowledge about AF. These core concepts are generalisable across multiple health 
monitoring applications. A knowledge graph is then built from the ontology using 
synthetic user profiles. Through the use case, we demonstrate that the architecture 
can support risk detection, prediction, and decision making. 

As demonstrated by experiments run on the synthetic user profiles, the archi-
tecture can correctly categorise the risk of AF and its associated conditions, and 
give appropriate recommendations to mitigate these risks. We demonstrate how the 
recommendations maintain human involvement, supporting clinician-led, individual-
led, and shared interventions. Importantly, we show that the monitoring process is 
grounded in established clinical guidelines, demonstrating the architecture’s capabil-
ity to support process and clinical interoperability. Additionally, we demonstrate that 
the architecture addresses key challenges identified in health monitoring systems. 

There are some limitations in the proposed approach. Firstly, rules are time-
consuming to develop and require updates to remain adaptive. This can be mitigated 
using ML to automate the creation of dynamic rules, although these may need to 
undergo verification from domain experts. Secondly, although fuzzy inference pro-
vides a framework for representing the degrees of membership to defined categories, 
it is limited in its ability to explain the uncertainty in causality, which is benefi-
cial for explaining the impact of risk factors on health. Additionally, the risk scores 
assume certainty in the inputted risk factors. However, these inputs may themselves 
be uncertain since they rely on precise and comprehensive health records which may 
not be available. Probabilistic models such as BNs are well suited for representing 
uncertainty in causal risk factors, and the combination of ontologies with BNs has 
seen some success. Subsequent iterations of the architecture will implement both 
fuzzy inference and BNs, and be evaluated on other health monitoring applications 
and with real-world data to demonstrate its generalisability. 

Finally, while continuous monitoring is a promising solution to the increasing 
prevalence of non-communicable diseases, it is not without its risks. Although false 
positives are preferred to false negatives, they may cause undue anxiety and psycho-
logical harm to the monitored person and result in costly and/or invasive diagnostic 
procedures. These potential harms must be carefully considered by both monitored 
persons and clinicians before the adoption of health monitoring systems. 
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