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Abstract Wearable sensors combined with health records and user-submitted data are
becoming ubiquitous for continuous health monitoring. Semantic web technologies
are well suited for representing and reasoning over these heterogeneous health data.
However, existing semantic health monitoring architectures have notable deficien-
cies, particularly in interoperability, situation prediction, and uncertainty handling.
We propose a semantic architecture that integrates an ontology with rules, fuzzy
inference, and machine learning to detect and predict health risks using heteroge-
neous health data. We illustrate its application through a use case of atrial fibrillation
and demonstrate its ability to detect and predict health situations, as well as provide
decision support aligned with established health workflows and clinical guidelines.
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1 Introduction

The increasing prevalence of non-communicable diseases has given rise to the emerg-
ing field of precision health, which focuses on assessing individual circumstances
for early detection, prevention, and mitigation of diseases. A key aspect of this is
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incorporating continuous health monitoring into people’s daily lives outside clin-
ical settings using wearable sensors [11]. However, sensor observations alone are
insufficient for health monitoring since non-communicable diseases are influenced
by demographics, medical history, and lifestyle factors. This additional health data
can be derived from health records and questionnaires, and can be interpreted using
expert medical knowledge.

Semantic web technologies are well-established for the representation of hetero-
geneous data and provide powerful reasoning and deliberation capabilities. The most
prominent of these are ontologies (knowledge bases of domain concepts and their
relationships specified in a knowledge representation language based on formal logic
[15]) and knowledge graphs (knowledge bases structured in a graph [34]). In previ-
ous work, we undertook a mapping study of the use of semantic web technologies in
sensor-based personal health monitoring systems [24]. We identified key challenges
that semantic architectures must address: interoperability, situation analysis (the de-
tection and prediction of health situations), decision support, context awareness, and
uncertainty handling. We critically evaluated the state of the art in the field and deter-
mined the extent to which these challenges have been addressed in current semantic
systems. The study showed notable deficiencies in existing work, particularly in the
areas of interoperability, situation analysis, and uncertainty handling.

A key aspect of interoperability that is poorly explored in existing semantic archi-
tectures is process and clinical interoperability, which entails a shared understanding
of healthcare processes and the seamless transfer of care between different clinical
teams [2]. This involves supporting clinicians in providing consistent care outside
clinical settings that is grounded in established clinical guidelines and workflows.
With regard to situation analysis, several semantic health monitoring systems are
capable of detecting abnormalities in sensor observations or classifying individuals
into predefined health states. However, many are unable to predict the risk of adverse
outcomes in the future. Additionally, many do not take uncertainty into consideration
in the situation analysis or decision support processes. While these challenges have
been tackled outside semantic systems, there is a need for semantic architectures
that integrate techniques for effective situation prediction and uncertainty handling,
while supporting decision making for health and wellness applications.

To address the shortcomings of current semantic personal health monitoring sys-
tems, we propose a semantic architecture for health monitoring using heterogeneous
health data. We demonstrate and evaluate the architecture through a use case appli-
cation of atrial fibrillation (AF), the most common sustained arrhythmia. We use a
top-down approach to create a knowledge graph by first developing an AF moni-
toring application ontology to semantically and formally represent health data, and
then using the ontology to perform inferences on the data [34]. Although ontologies
excel in structuring domain knowledge, they lack explicit support for uncertainty
[23]. To deal with this, we incorporate rules supported by fuzzy inference to reason
over the data for situation analysis and decision support under uncertainty. Rule-
based reasoning is intuitive and human-readable, resulting in high transparency and
explainability [13], while fuzzy inference is useful for expressing concepts in vague
terms, which addresses the inherent uncertainty in health situations and outcomes.



A Semantic Architecture for Continuous Health Monitoring 3

We also show how outputs from machine learning (ML) classification models can
be incorporated in the knowledge graph to enhance situation analysis. As illustrated
by the use case, the proposed architecture is capable of detecting and predicting
adverse health situations, and offering appropriate decision support firmly rooted in
well-established clinical guidelines and workflows.

2 Related Work in Sensor-Based Personal Health Monitoring
Systems

Semantic systems The use of semantic web technologies is ubiquitous in the health
domain. However, a notable limitation of these technologies is their inability to
inherently reason under uncertainty. It is therefore essential to augment semantic
architectures with techniques that support uncertainty handling. One such technique
is Bayesian networks (BNs), probabilistic graphical models in the form of directed
acyclic graphs that represent cause-effect relationships. BNs have been used in
semantic health monitoring systems to represent causes and risk factors of diseases,
as is done by Kordestani et al. [19] and Mcheick et al. [22]. While BNs are suitable for
modelling uncertainty in causality, they are not conducive to modelling uncertainty
in raw or derived health data.

This challenge can be overcome using fuzzy inference, the process of mapping
crisp input into imprecise output. Fuzzy inference is capable of converting crisp
health data values into degrees of membership of defined health categories. This
allows health data to be expressed in fuzzy boundaries, which is representative
of human reasoning. This has been incorporated in a number of semantic health
monitoring systems. For instance, Ali et al. [1] fuzzify sensor data such as blood
pressure and heart rate, while Esposito et al. [8] fuzzify the intensity of physical
activity. Despite several semantic personal health monitoring systems incorporating
these uncertainty handling techniques, it is often only done to a limited extent. Most of
these systems do not account for uncertainty across the end-to-end health monitoring
process from data pre-processing to situation analysis and decision support.

Situation prediction is similarly limited in current semantic personal health mon-
itoring systems. While a number of existing semantic systems anticipate adverse
health outcomes (for example, Hristoskova et al. [17] determine the risk of conges-
tive heart failure over a four-year time horizon, while De Brouwer et al. [6] anticipate
headache attacks based on triggers), most focus on the detection of current health
conditions without considering future outcomes. Our mapping study showed that
only 13 out of 40 selected systems achieve some degree of situation prediction
[24]. Additionally, many of these systems demonstrate ad hoc analyses that lack a
solid foundation in established healthcare protocols. Thus, many existing semantic
architectures fall short on building up on standardized healthcare workflows and
guidelines. It is essential to develop semantic systems that facilitate collaboration
between monitored individuals and clinicians, emphasizing established healthcare
processes with humans in the loop.
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Non-semantic systems There also exist many sensor-based personal health mon-
itoring systems that do not incorporate semantic web technologies. A significant
number of these non-semantic systems incorporate predictive models for outcomes
ranging from cardiovascular disease [18], mortality and readmissions [5], and clinical
laboratory measurements [7]. Among these systems, data-driven approaches, par-
ticularly deep learning, remain dominant. These models are well suited to learning
complex features in dynamic sensor data. However, interpretability, explainability,
computational expense, and the need for large amounts of data remain challenges in
training and deploying neural networks [16]. In contrast, semantic web technologies
are known to be more human-understandable and do not rely on large amounts of
training data. There is a need to develop semantic architectures that incorporate
ML, where the strengths of data-driven and knowledge-driven approaches can be
leveraged to achieve the best of both worlds.

AF monitoring systems The most widely accepted signal for the diagnosis of AF
is the electrocardiogram (ECG), a record of the heart’s electrical activity. ECG data
has been used extensively in AF monitoring systems for both situation detection
and prediction [32]. While ECG remains the gold standard, some alternative phys-
iological signals to detect AF have been proposed. The most prevalent of these is
photoplethysmography (PPG), an optical sensing technology consisting of a light-
emitting diode and a photodetector to detect blood volume changes. PPG is low-cost
and non-intrusive, and has been used in a number of systems with promising results
[25]. However, the accuracy of the signal can be affected by sensor placement, mo-
tion artifacts, contact pressure, skin tone, and obesity [28]. This can be alleviated by
combining ECG and PPG, which has shown significant potential for AF monitoring
[30].

Additionally, demographic (e.g. age and sex) and anthropometric (e.g. height and
weight) data, medical history, and lifestyle factors are all important aspects of AF
monitoring due to their impact on the likelihood of developing AF and its associated
health risks. This data can be queried from health record databases. For example,
Feldman et al. [9] integrate Apple Watch data with health records to determine AF
patient eligibility for anticoagulation therapy given the risk of stroke. Non-sensor
data can also be solicited directly from individuals via questionnaires. This can be
particularly useful for describing AF symptoms and their severity based on impact on
quality of life. For instance, the Atrial Fibrillation Effect on QualiTy-of-life (AFEQT)
questionnaire was developed to assess the impact of AF [33].

3 Semantic Architecture

Design and Approach The design of the proposed architecture is guided by the
key challenges identified in our previous mapping study. An important commonality
among these challenges is the need for representation support. To define these chal-
lenges as design goals, we adapt the concept of competency questions (CQs), which
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are natural language questions typically used for requirements definition in ontology
engineering [29]. We formulate ten design goals expressed as CQs, which are then
used to analyse the architecture. The CQs are shown in Table 1. Note that the focus
of this work is on a prototype semantic architecture for continuous monitoring, situ-
ation prediction, and decision making. Non-functional requirements such as privacy
and security, while important issues in a real-world monitoring system, are out of
scope of this study. A running use case application of AF is used to iteratively design
and evaluate the architecture. This is described in detail in Section 4.

Table 1: The requirements of the architecture expressed as competency questions.

Challenge CQ# Competency Question

Interoperability

CQ1
Does the architecture support process/clinical interoperability (i.e.
a common understanding of healthcare processes and the seamless
transfer of care between different clinical teams)?

CQ2
Does the architecture support semantic interoperability (i.e. the
definition of health data in an unambiguous and universally under-
standable way)?

CQ3 Does the architecture support syntactic interoperability (i.e. the
representation of health data in a standard structure and syntax)?

Context awareness CQ4 Does the architecture support the representation of contextual in-
formation such as identity, location, time, and activity?

Situation analysis CQ5
Does the architecture support techniques for both the detection
of current health situations and the prediction of future health
situations?

Decision support
CQ6 Does the architecture support techniques that enhance transparency

and explainability?

CQ7 Does the architecture support the generation of recommendations
and warnings in response to detected and predicted situations?

Uncertainty handling
CQ8 Does the architecture support data pre-processing techniques to

handle missing, noisy, or otherwise invalid data?

CQ9 Does the architecture support uncertainty handling in both the
situation analysis and decision support processes?

Cross-cutting CQ10 Does the architecture support the representation of sensor obser-
vations, personal information, and expert medical knowledge?

Abstract Architecture To fulfill the design goals, we propose an abstract semantic
architecture consisting of three layers as shown in Fig. 1.

i. Data Layer: This layer supports the pre-processing of heterogeneous health
data, i.e. sensor observations, health records, and data from questionnaires.
Importantly, all data is formatted by mapping it to the Health Level 7 (HL7) Fast
Health Interoperability Resources (FHIR)1 standard for health data exchange.

ii. Analysis Layer: This layer handles the situation analysis functionality of the
architecture using ML, rules, and fuzzy inference. This entails analysing health

1 https://build.fhir.org/
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Fig. 1 Abstract semantic
architecture.

data to detect current health situations, while also predicting future health situ-
ations based on current data.

iii. Decision Layer: Central to this layer is the integration of well-established health-
care workflows which are dynamically updated to align with the latest clinical
guidelines. Adhering to these guidelines, the layer facilitates decision making in
response to both detected and predicted health situations by generating recom-
mendations, issuing warnings for adverse conditions, and providing pertinent
alerts for both clinicians and monitored individuals.

A cross-cutting component of the three layers is the knowledge graph, in which all
data, knowledge, situations, recommendations, and alerts are semantically annotated,
represented, and stored.

4 Use Case Application: Atrial Fibrillation

AF presents a significant global health burden, affecting an estimated 46.3 million
individuals worldwide as of 2016 and increasing steadily in incidence and prevalence
[20]. AF symptoms include chest pain, heart palpitation, shortness of breath, and
fatigue. However, it is sometimes asymptomatic, highlighting the need for early
detection through continuous monitoring.

The AF monitoring process detailed in this section is anchored in the most recent
European [14] and Australian [4] guidelines for AF diagnosis and management.
Fig. 2 shows this process in a flow diagram. Facilitating collaboration between
monitored individuals and clinicians, the process outlines clinician-led, individual-
led, and shared interventions in response to detected and predicted situations. Thus,
the architecture complements established AF workflows, ensuring active human
participation throughout the monitoring process. In the rest of this section, we
analyse the AF monitoring process following the three layers of the architecture.
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Fig. 2: Flow diagram showing the AF monitoring process. ECG: electrocardiogram.
OAC: oral anticoagulation.

I. Data Layer In this layer, health data relevant to AF is preprocessed. Although
live sensor data was not used in this study, a wearable device such as the Polar H10
chest strap2 can be used to collect ECG data. This device is equipped with Bluetooth
Low Energy technology, allowing for extraction of the raw single-lead ECG data
using a library such as Python’s Bluetooth Low Energy platform Agnostic Klient
(Bleak)3. The ECG data can be encoded as a FHIR Observation resource. Techniques
such as filtering, detection of waveform characteristics, frequency conversion, and
normalization can be used to preprocess the data in preparation for situation analysis.

The architecture assumes that comprehensive health records, including demo-
graphic and anthropometric data as well as diagnosis, procedure, and medication
history, are available and can be queried from existing databases. Where necessary,
individuals can be prompted for input via a system-generated questionnaire regard-
ing lifestyle factors, experienced symptoms, and their severity. Data cleaning is also
performed in this layer to establish the validity and reliability of the health data.

II. Analysis Layer Situation analysis takes place in this layer, and includes both
situation detection and situation prediction.

Situation Detection In the context of AF monitoring, situation detection involves
determining whether the monitored person currently has AF or not based on sen-
sor observations and personal information such as experienced symptoms and risk
factors. As discussed in Section 2, the detection of AF from sensor observations
has been greatly accelerated by ML, with many models meeting and even exceeding
human accuracy. In previous work [36, 35], we have implemented ML algorithms
such as multilayer perceptron, gradient boosting, and support vector machines to
detect AF from ECG data. ML-enabled classifications are captured in the AF moni-

2 https://www.polar.com/en/sensors/h10-heart-rate-sensor
3 https://bleak.readthedocs.io
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toring ontology (AFMO) as detected situations. This can be used as a screening tool
for further clinician-led diagnosis. As shown in Fig. 2, false positives are logged in
the system and included as historical training data to improve the ML models. The
individual’s symptom state (i.e. whether they are symptomatic or asymptomatic) and
severity of any symptoms is also captured in the AFMO.

Situation Prediction In this work, we focus primarily on the prediction of AF and its
associated health risks, with the two most significant being stroke and major bleeding.
AF increases the risk of stroke due to a reduced quality in heart contractions, resulting
in slow flow of blood and subsequent formation of blood clots [14]. This is commonly
managed using oral anticoagulation to prevent blood clot formation, which in turn
has the risk of major bleeding. Therefore, the risks of both stroke and major bleeding
must be carefully weighed for people diagnosed with AF.

Risk scores provide a systematic and quantifiable assessment of the likelihood
of health outcomes, forming a well-established basis for health situation prediction
based on risk factors. We selected the HARMS2-AF score [31], the CHA2DS2-VASc
score [21], and the HAS-BLED score [26] to quantify the risks of new onset AF,
stroke, and major bleeding respectively. Each scoring system recommends a risk
category (low, moderate, or high) based on the score. Tables 2 and 3 summarise the
scoring systems and their risk factors respectively.

Table 2: Summary of the scoring systems, where x = risk score.

Scoring System Risk Highest Possible
Score

Risk Stratification
Low Risk Moderate Risk High Risk

HARMS2-AF AF 14 x ≤ 4 5 ≤ x ≤ 9 x > 9
CHA2DS2-VASc Stroke 10 x = 0 x = 1 x ≥ 2
HAS-BLED Major bleeding 10 x ≤ 1 x = 2 x ≥ 3

Table 3: Summary of the risk factors for each scoring system.

Scoring System Risk Factors
HARMS2-AF Hypertension; Age; Raised BMI; Male sex; Sleep apnoea; Smoking; Alcohol

CHA2DS2-VASc Congestive heart failure/LV dysfunction; Hypertension; Age ≥ 75; Diabetes
mellitus; Stroke; Vascular disease; Age btwn. 65 and 74; Sex category (female)

HAS-BLED Hypertension; Abnormal renal/liver function; Stroke; Bleeding history/pre-
disposition; Labile intl. normalized ratio; Elderly; Drugs/alcohol concomitantly

Since health risk cannot be binary and must take into account the intrinsic un-
certainty associated with future outcomes, we propose a fuzzy inference approach
to account for uncertainty in the risk scores and health risk categories. The fuzzy
inference process for each risk score takes place in three steps:

i. Fuzzification: We fuzzify the crisp risk scores using three membership func-
tions for each score corresponding to low, medium, and high score categories.
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These input membership functions are based on the recommended risk category
stratification for each scoring system, and are shown in Fig. 3. The output of
this step is a fuzzified value showing varying degrees of membership to each
score category on a scale of 0 to 1. For example, a HARMS2-AF score of 9
has a membership of 0.00 to the low score category, 0.73 to the medium score
category, and 0.27 to the high score category. This can be coded as a fuzzy value
[0.00, 0.73, 0.27].

ii. Inference: To determine the corresponding health risk category, fuzzy rules are
used to define the relationship between the input and output. The rules are as
follows: if the score is low, then the health risk is low; if the score is medium,
then the health risk is moderate; and if the score is high, then the health risk is
high. In this case, the score and health risk categories are similar. Therefore, the
output of this step will be the same as the input, i.e. [0.00, 0.73, 0.27].

iii. Defuzzification: To defuzzify the fuzzy value, a crisp value is computed using
Mamdani inference. This value represents the percentage risk. To assign a risk
category to the percentage risk, we use another membership function as follows:
where y is a person’s computed percentage risk, they are at low risk if 0 <

y < 40, at moderate risk if 10 < y < 70 and at high risk if 40 < y < 100.
This output membership function is shown in Fig. 3. Using this defuzzification
method, a HARMS2-AF score of 9 results in a percentage risk of 50.06%,
which can be considered mostly moderate risk but also partially high risk as it
has a membership of 0.00, 0.68, and 0.32 to the low, moderate, and high risk
categories respectively. In contrast, using the recommended HARMS2-AF crisp
thresholds, the score of 9 would be considered only moderate risk. Thus, the
fuzzy risk category stratification informs appropriate decision support that takes
into account the range of risk in each score.

Fig. 3 Membership functions
for the HARMS2-AF score,
CHA2DS2-VASc score, HAS-
BLED score, and the risk
category.
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III. Decision Layer After situation analysis, it is important that any adverse detected
or predicted situations are appropriately managed. Warning alerts are triggered when
AF is detected or when moderate or high health risks are predicted. At the same
time, recommendations are given based on these adverse situations. The degrees of
membership for the health risk categories as determined by fuzzy inference play
an important role in the selection of appropriate recommendations. For example,
low risk is only considered truly low risk if there is no degree of membership to
the high or moderate risk categories. The process flow diagram in Fig. 2 shows the
recommendations generated in response to each situation.

5 AF Monitoring Ontology

In this section, we provide details on the development of the AFMO, which provides
the data schema for the knowledge graph. Methontology [10] was selected as the
ontology development methodology as it is detailed and application-independent.
The methodology consists of seven phases which we detail below.

I. Specification In this phase, the AFMO’s purpose, scope, and requirements are
clearly defined. The main purpose of the ontology within the architecture is to
provide representation support and a data schema for three categories of data: sensors
and sensor observations, personal information, and expert medical knowledge. This
enables higher-level reasoning for situation analysis and decision support. The scope
of the AFMO is limited to AF; however, the top-level concepts of the ontology are
generalisable for other health use cases. The AFMO requirements are specified in
terms of CQs, which cover the representation support and reasoning capabilities of
the ontology. Examples of these CQs include: What are the symptoms of AF? What
are the risk factors for AF? What is a particular person’s risk level for AF?

II. Knowledge Acquisition The AFMO was developed using expert knowledge
obtained from the literature. Scientific publications, textbooks, and clinical practice
guidelines for AF management were consulted.

III. Conceptualization This phase involves structuring three categories of data in
a conceptual model. The first category includes classes to represent sensor devices,
their measurements, and the properties they measure. The second category encom-
passes personal information, includes anthropometric, demographic, and lifestyle
data, as well as information about the individual’s medical history, current diag-
noses, symptoms being experienced, and detected and predicted situations. Finally,
the medical knowledge category represents risk factors for and symptoms of AF and
its associated conditions. It also includes recommendations for mitigating detected
and predicted situations. The top level concepts of the AFMO are shown in Fig. 4.

IV. Integration In this phase, the AFMO is integrated with concepts from existing
ontologies and vocabularies. Additionally, all health domain concepts are cross-
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Fig. 4 The top level concepts
of the AF monitoring ontol-
ogy.

referenced to the Unified Medical Language System (UMLS) metathesaurus [3],
which maps to several medical vocabularies and standards.

V. Implementation In this phase, the AFMO is codified in a formal language.
The AFMO was implemented using Protégé4. Rules and queries were written using
Semantic Web Rule Language (SWRL)5 and SPARQL Protocol and RDF Query
Language (SPARQL)6 respectively.

VI. Evaluation Throughout the ontology development process, the Pellet reasoner
was used to detect inconsistencies in the AFMO. No inconsistencies were detected in
the final version of the AFMO. Additionally, the OntOlogy Pitfall Scanner! (OOPS!)
[27] was used to evaluate different aspects of the AFMO including modelling de-
cisions and inferences. Only one minor pitfall was detected: “P2: Using different
naming conventions in the ontology”. This is because of the re-use of concepts
from existing ontologies which all have different naming conventions. Finally, the
answerability of the CQs was also evaluated using queries.

VII. Documentation The AFMO is publicly available at a persistent URL (PURL)7.
The AFMO specification and documentation was created using the WIzard for
DOCumenting Ontologies (WIDOCO) [12] and is publicly accessible online8.

6 Evaluation and Analysis

Use Case Evaluation To evaluate the representation support and reasoning capa-
bility of the architecture for the use case, we created 25 synthetic user profiles with
various random combinations of medical histories, diagnoses, symptoms, and other
personal information. Because the primary focus of this work is on risk prediction
using risk scores, no sensor data was included in the synthetic profiles. The profiles’
ages range from 31 to 80, with 11 being male and 14 being female, and 12 having an

4 https://protege.stanford.edu/
5 https://www.w3.org/Submission/SWRL/
6 https://www.w3.org/TR/rdf-sparql-query/
7 https://purl.org/afmo
8 https://mbithenzomo.github.io/afmo
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existing diagnosis of AF. As per the process flow diagram in Fig. 2, the HARMS2-AF
score is computed for those who do not have an AF diagnosis, while the CHA2DS2-
VASc and HAS-BLED scores are computed for those with an AF diagnosis. Table 4
gives a partial summary of the synthetic user profiles. The full synthetic data as well
as the code used to generate it is available on GitHub9.

Table 4: Partial summary of the synthetic user profiles. M: male; F: female; Y: yes;
N: no; LR: low risk; MR: moderate risk; HR: high risk; N/A: not applicable

ID Age Sex BMI Smoking
Status

Weekly Alcoholic
Drinks

AF
Diagnosis

Crisp Risk Score and Category
AF Stroke Major Bleeding

001 50 M 28.1 Never 13 Y N/A 1 (MR) 3 (HR)
002 47 F 24.8 Former 14 N 1 (LR) N/A N/A
003 64 M 26.5 Former 4 N 7 (MR) N/A N/A
004 43 F 19.5 Current 9 Y N/A 5 (HR) 7 (HR)
005 33 M 31.6 Former 4 Y N/A 4 (HR) 2 (MR)
006 49 F 38.0 Never 16 Y N/A 3 (HR) 3 (HR)
007 72 F 31.0 Former 11 N 4 (LR) N/A N/A
008 32 F 29.0 Never 14 N 5 (MR) N/A N/A
009 75 F 28.9 Never 7 Y N/A 6 (HR) 5 (HR)
010 43 F 30.3 Former 4 N 1 (LR) N/A N/A
011 68 M 29.0 Current 15 N 9 (MR) N/A N/A
012 67 F 29.6 Never 10 N 3 (LR) N/A N/A
013 51 M 22.1 Never 2 N 2 (LR) N/A N/A
014 59 F 24.6 Former 7 Y N/A 5 (HR) 4 (HR)
015 62 M 25.3 Never 5 Y N/A 3 (HR) 3 (HR)
016 60 F 28.4 Current 1 N 6 (MR) N/A N/A
017 46 M 27.2 Current 10 N 6 (MR) N/A N/A
018 62 M 27.9 Current 12 Y N/A 1 (MR) 2 (MR)
019 54 F 43.7 Never 13 Y N/A 2 (HR) 5 (HR)
020 31 M 22.2 Never 11 Y N/A 2 (HR) 3 (HR)
021 70 F 30.1 Former 8 Y N/A 5 (HR) 5 (HR)
022 44 M 23.9 Never 11 N 3 (LR) N/A N/A
023 47 F 22.2 Former 9 N 1 (LR) N/A N/A
024 80 F 36.7 Never 17 N 7 (MR) N/A N/A
025 78 M 24.9 Current 4 Y N/A 3 (HR) 4 (HR)

After creating the synthetic profiles, we ran the Pellet reasoner to confirm that the
correct inferences were computed, and queried the knowledge graph to answer the
CQs. For example, Fig. 5(a) shows a subset of the property assertions inferred by
the Pellet reasoner for a particular profile, including predicted bleeding and stroke
risk levels as well as the corresponding recommendations, while Fig. 5(b) shows a
sample query to list all individuals at high risk for stroke. The properties asserted by
the reasoner and the results of the sample query show that the architecture is able
to correctly categorise the risk of AF and its associated conditions, as well as give
appropriate recommendations to mitigate these risks.

9 https://github.com/mbithenzomo/afmo



A Semantic Architecture for Continuous Health Monitoring 13

Fig. 5 (a) A subset of the
property assertions inferred
by the Pellet reasoner. (b)
A sample SPARQL query
showing individuals with high
risk levels for stroke.

(a) Property assertions (b) Sample SPARQL query

Architectural Analysis Having demonstrated the implementation of the architec-
ture using the AF use case, we now analyse it according to the previously defined
design goals.

CQ1 Process/clinical interoperability: This is a pivotal thread running through
the entire architecture and monitoring process, supported by incorporating
established clinical practice guidelines from accredited health organisations.

CQ2 Semantic interoperability: The ontology supports the cross-referencing of
health concepts to standard medical terminologies through the UMLS.

CQ3 Syntactic interoperability: This is achieved in the data layer, in which all data
and resources are mapped to the FHIR standard.

CQ4 Contextual information: This is supported through the ontology, which facil-
itates the representation of contextual data including identity (e.g. name and
age) and temporal concepts (e.g. timestamps and GPS coordinates).

CQ5 Situation analysis: The architecture supports both rule-based situation pre-
diction using health risk scores and the capture of ML classifications in the
ontology for situation detection.

CQ6 Transparency and explainability: Semantic web technologies, which are
highly interpretable and enhance explainability in AI systems, are at the
core of the architecture. Additionally, rule-based reasoning contributes to
transparency in situation analysis and decision support.

CQ7 Recommendations and warnings: The decision layer supports the generation
of warnings triggered by adverse situations, and recommendations to mitigate
these situations based on clinical guidelines.

CQ8 Data pre-processing: This is done in the data layer, where signal processing
and data cleaning techniques are implemented to ensure the data is valid and
suitable for semantic annotation and situation analysis.

CQ9 Uncertainty handling: The architecture supports fuzzy inference in the anal-
ysis layer, allowing for varying degrees of membership to health categories
as part of situation analysis, which in turn influences decision support.

CQ10 Representation support: This is facilitated by the ontology, which forms the
core of the architecture. All health data and expert knowledge is semantically
annotated and captured in the ontology.
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7 Discussion and Conclusion

This paper proposes a semantic architecture for personal health monitoring using
heterogeneous sources of health data. Through an ontology, the architecture can
semantically represent health data and expert knowledge. Rules and fuzzy inference
are used for reasoning, thereby facilitating situation analysis and decision support
under uncertainty. The functionality of the architecture is demonstrated through a
prototype implementation for the use case of AF. We develop an ontology, AFMO, to
model concepts relating to sensor observations, personal information, and medical
knowledge about AF. These core concepts are generalisable across multiple health
monitoring applications. A knowledge graph is then built from the ontology using
synthetic user profiles. Through the use case, we demonstrate that the architecture
can support risk detection, prediction, and decision making.

As demonstrated by experiments run on the synthetic user profiles, the architec-
ture can correctly categorise the risk of AF and its associated conditions, and give
appropriate recommendations to mitigate these risks. We demonstrate how the rec-
ommendations maintain human involvement, supporting clinician-led, individual-
led, and shared interventions. Importantly, we show that the monitoring process is
grounded in established clinical guidelines, demonstrating the architecture’s capabil-
ity to support process and clinical interoperability. Additionally, we demonstrate that
the architecture addresses key challenges identified in health monitoring systems.

There are some limitations in the proposed approach. Firstly, rules are time-
consuming to develop and require updates to remain adaptive. This can be mitigated
using ML to automate the creation of dynamic rules, although these may need to
undergo verification from domain experts. Secondly, although fuzzy inference pro-
vides a framework for representing the degrees of membership to defined categories,
it is limited in its ability to explain the uncertainty in causality, which is beneficial
for explaining the impact of risk factors on health. Additionally, the risk scores as-
sume certainty in the inputted risk factors. However, these inputs may themselves be
uncertain since they rely on precise and comprehensive health records which may
not be available. Probabilistic models such as BNs are well suited for representing
uncertainty in causal risk factors, and the combination of ontologies with BNs has
seen some success. Subsequent iterations of the architecture will implement both
fuzzy inference and BNs, and be evaluated on other health monitoring applications
and with real-world data to demonstrate its generalisability.

Finally, while continuous monitoring is a promising solution to the increasing
prevalence of non-communicable diseases, it is not without its risks. Although
false positives are preferred to false negatives, they may cause undue anxiety and
psychological harm to the monitored person and result in costly and/or invasive
diagnostic procedures. These potential harms must be carefully considered by both
monitored persons and clinicians before the adoption of health monitoring systems.
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